Compton and proximity imaging of 225Ac in vivo with a CZT gamma camera: a proof of principle with simulations

IEEE Trans Radiat Plasma Med Sci. 2022 Nov;6(8):904-915. doi: 10.1109/trpms.2022.3166116. Epub 2022 Apr 11.

Abstract

In vivo imaging of 225Ac is a major challenge in the development of targeted alpha therapy radiopharmaceuticals due to the extremely low injected doses. In this paper, we present the design of a multi-modality gamma camera that integrates both proximity and Compton imaging in order to achieve the demanding sensitivities required to image 225Ac with good image quality. We consider a dual-head camera, each of the heads consisting of two planar cadmium zinc telluride detectors acting as scatterer and absorber for Compton imaging, and with the scatterer practically in contact with the subject to allow for proximity imaging. We optimize the detector's design and characterize the detector's performance using Monte Carlo simulations. We show that Compton imaging can resolve features of up to 1.5 mm for hot rod phantoms with an activity of 1 μCi, and can reconstruct 3D images of a mouse injected with 0.5 μCi after a 15 minutes exposure and with a single bed position, for both 221Fr and 213Bi. Proximity imaging is able to resolve two 1 mm-radius sources of less than 0.1 μCi separated by 1 cm and at 1 mm from the detector, as well as it can provide planar images of 221Fr and 213Bi biodistributions of the mouse phantom in 5 minutes.

Keywords: Compton imaging; actinium-225; preclinical imaging; proximity imaging; targeted alpha therapy.