Syntheses and structural characterization of divalent metal complexes (Co, Ni, Pd and Zn) of sterically hindered thiourea ligand and a theoretical insight of their interaction with SARS-CoV-2 enzyme

J Mol Struct. 2023 Feb 15:1274:134442. doi: 10.1016/j.molstruc.2022.134442. Epub 2022 Oct 31.

Abstract

Reacting two equivalents of sterically hindered 1,3-bis(2,6-diethylphenyl)thiourea ligand (L) with CoCl2, NiBr2, PdX2 (X = Cl; Br) and ZnI2 in acetonitrile afforded the corresponding bulky thiourea ligand stabilized four coordinated monomeric [L2CoCl2] (1), [L2NiBr2] (2), [L2PdX2] (3a: X = Cl; 3b: X = Br) and [L2ZnI2] (4.2CH3CN) complexes. Compound 1, 2 and 4.2CH3CN are tetrahedral whereas Pd complexes (3a and 3b) are square planar. In solution, palladium complexes are dominated by cis-isomers. Structural characterization shows inter- and intramolecular hydrogen bonding. Hirshfeld surface and fingerprint plots indicated significant intermolecular interactions in the crystal network. Molecular docking analysis revealed relatively higher SARS-CoV-2 enzyme interacting abilities of the synthesized complexes compared to the free ligand. All compounds have been characterized by elemental analyses, NMR spectroscopy and single-crystal X-ray diffraction.

Keywords: Bioinorganic; Coordination chemistry; Metal complexes; Molecular docking; S-ligands.