VEGFA rs2010963 GG genotype is associated with superior adaptations to resistance versus endurance training in the same group of healthy, young men

Mol Genet Genomics. 2023 Jan;298(1):119-129. doi: 10.1007/s00438-022-01965-4. Epub 2022 Nov 3.

Abstract

Purpose: We used a within-subject, cross-over study to determine the relationship between the intra-individual adaptations to four weeks' resistance (RT) versus four weeks' endurance (END) training, and we investigated whether three single nucleotide polymorphisms (SNPs) were associated with these adaptations.

Methods: Thirty untrained, healthy, young men completed a cycling test to exhaustion to determine peak oxygen uptake (V̇O2peak), and a knee extension (KE) maximum voluntary isometric contraction (MVIC) of the right leg before and after four weeks' supervised RT (four sets of 10 repetitions at 80% single repetition maximum unilateral KE exercise, three times weekly) and four weeks' supervised END (30 min combined continuous/interval cycling, three times weekly), separated by a three-week washout phase. Participants were genotyped for the ACTN3 rs1815739, NOS3 rs2070744 and VEGFA rs2010963 SNPs.

Results: The intra-individual adaptations regarding percentage changes in MVIC force and V̇O2peak following RT and END, respectively, were unrelated (r2 = 0.003; P = 0.79). However, a VEGFA genotype × training modality interaction (P = 0.007) demonstrated that VEGFA GG homozygotes increased their MVIC force after RT (+ 20.9 ± 13.2%) more than they increased their V̇O2peak after END (+ 8.4 ± 9.1%, P = 0.005), and more than VEGFA C-allele carriers increased their MVIC force after RT (+ 12.2 ± 8.1%, P = 0.04). There were no genotype × training modality interactions for the ACTN3 or NOS3 SNPs.

Conclusion: High/low responders to RT were not consequently high/low responders to END or vice versa. However, preferential adaptation of VEGFA rs2010963 GG homozygotes to RT over END, and their greater adaptation to RT compared to VEGFA C-allele carriers, indicate a novel genetic predisposition for superior RT adaptation.

Keywords: Aerobic training; Genetic variation; Maximal force; Strength training; Training response.

MeSH terms

  • Actinin / genetics
  • Adaptation, Physiological / genetics
  • Cross-Over Studies
  • Endurance Training*
  • Genotype
  • Humans
  • Male
  • Muscle Strength / genetics
  • Muscle, Skeletal
  • Resistance Training*
  • Vascular Endothelial Growth Factor A / genetics

Substances

  • VEGFA protein, human
  • Vascular Endothelial Growth Factor A
  • ACTN3 protein, human
  • Actinin