Secure secondary utilization system of genomic data using quantum secure cloud

Sci Rep. 2022 Nov 2;12(1):18530. doi: 10.1038/s41598-022-22804-x.

Abstract

Secure storage and secondary use of individual human genome data is increasingly important for genome research and personalized medicine. Currently, it is necessary to store the whole genome sequencing information (FASTQ data), which enables detections of de novo mutations and structural variations in the analysis of hereditary diseases and cancer. Furthermore, bioinformatics tools to analyze FASTQ data are frequently updated to improve the precision and recall of detected variants. However, existing secure secondary use of data, such as multi-party computation or homomorphic encryption, can handle only a limited algorithms and usually requires huge computational resources. Here, we developed a high-performance one-stop system for large-scale genome data analysis with secure secondary use of the data by the data owner and multiple users with different levels of data access control. Our quantum secure cloud system is a distributed secure genomic data analysis system (DSGD) with a "trusted server" built on a quantum secure cloud, the information-theoretically secure Tokyo QKD Network. The trusted server will be capable of deploying and running a variety of sequencing analysis hardware, such as GPUs and FPGAs, as well as CPU-based software. We demonstrated that DSGD achieved comparable throughput with and without encryption on the trusted server Therefore, our system is ready to be installed at research institutes and hospitals that make diagnoses based on whole genome sequencing on a daily basis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Cloud Computing*
  • Computer Security*
  • Genome, Human
  • Genomics
  • Humans
  • Software