Bispecific antibodies targeting CD40 and tumor-associated antigens promote cross-priming of T cells resulting in an antitumor response superior to monospecific antibodies

J Immunother Cancer. 2022 Nov;10(11):e005018. doi: 10.1136/jitc-2022-005018.

Abstract

Background: Indications with poor T-cell infiltration or deficiencies in T-cell priming and associated unresponsiveness to established immunotherapies represent an unmet medical need in oncology. CD40-targeting therapies designed to enhance antigen presentation, generate new tumor-specific T cells, and activate tumor-infiltrating myeloid cells to remodel the tumor microenvironment, represent a promising opportunity to meet this need. In this study, we present the first in vivo data supporting a role for tumor-associated antigen (TAA)-mediated uptake and cross-presentation of tumor antigens to enhance tumor-specific T-cell priming using CD40×TAA bispecific antibodies, a concept we named Neo-X-Prime.

Methods: Bispecific antibodies targeting CD40 and either of two cell-surface expressed TAA, carcinoembryonic antigen-related cell adhesion molecule 5 (CEA) or epithelial cell adhesion molecule (EpCAM), were developed in a tetravalent format. TAA-conditional CD40 agonism, activation of tumor-infiltrating immune cells, antitumor efficacy and the role of delivery of tumor-derived material such as extracellular vesicles, tumor debris and exosomes by the CD40×TAA bispecific antibodies were demonstrated in vitro using primary human and murine cells and in vivo using human CD40 transgenic mice with different tumor models.

Results: The results showed that the CD40×TAA bispecific antibodies induced TAA-conditional CD40 activation both in vitro and in vivo. Further, it was demonstrated in vitro that they induced clustering of tumor debris and CD40-expressing cells in a dose-dependent manner and superior T-cell priming when added to dendritic cells (DC), ovalbumin (OVA)-specific T cells and OVA-containing tumor debris or exosomes. The antitumor activity of the Neo-X-Prime bispecific antibodies was demonstrated to be significantly superior to the monospecific CD40 antibody, and the resulting T-cell dependent antitumor immunity was directed to tumor antigens other than the TAA used for targeting (EpCAM).

Conclusions: The data presented herein support the hypothesis that CD40×TAA bispecific antibodies can engage tumor-derived vesicles containing tumor neoantigens to myeloid cells such as DCs resulting in an improved DC-mediated cross-priming of tumor-specific CD8+ T cells. Thus, this principle may offer therapeutics strategies to enhance tumor-specific T-cell immunity and associated clinical benefit in indications characterized by poor T-cell infiltration or deficiencies in T-cell priming.

Keywords: antigen presentation; antigens, neoplasm; dendritic cells; drug evaluation, preclinical; immunotherapy, active.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Bispecific* / pharmacology
  • Antibodies, Bispecific* / therapeutic use
  • Antigens, Neoplasm
  • CD40 Antigens / metabolism
  • CD8-Positive T-Lymphocytes
  • Cross-Priming*
  • Dendritic Cells
  • Epithelial Cell Adhesion Molecule / metabolism
  • Humans
  • Mice

Substances

  • Antibodies, Bispecific
  • Epithelial Cell Adhesion Molecule
  • CD40 Antigens
  • Antigens, Neoplasm