Teratogenic Evaluation of 80% Ethanol Extract of Embelia schimperi Vatke Fruits on Rat Embryo and Fetuses

J Toxicol. 2022 Oct 22:2022:4310521. doi: 10.1155/2022/4310521. eCollection 2022.

Abstract

Introduction: Embelia schimperi Vatke (family Myrsinaceae) is a commonly consumed anthelminthic plant in Ethiopia. The plant has significant efficacy in treating intestinal worms. However, there are limited data about the safety/toxicity of the plant. Moreover, the teratogenic effect of the plant is not yet well studied despite significant number of Ethiopian mothers consuming herbal medication during their pregnancy.

Purpose: This study aimed to evaluate the teratogenic effect of the hydroalcoholic extract of E. schimperi fruit on rat embryos and fetuses.

Methods: Pregnant albino Wistar rats were treated with 80% hydroalcoholic fruit extract of E. schimperi at 250 mg/kg, 500 mg/kg, and 1000 mg/kg dosage, whilst the controls were pair-fed and ad libitum groups. Maternal food intake, maternal weight gain, number of implantations, number of prior resorptions, fetal viability, fetal weight, fetal and embryonic crown-ramp length, placental weight, placental gross morphology and histopathology of placental tissue, number of somites, embryonic system, gross/visceral morphological malformations, and ossification centers were evaluated as teratogenicity indices.

Results: The crude extract of E. schimperi did not exhibit a significant difference in most developmental indices including the development of a circulatory system, nervous system, and musculoskeletal systems among treated animals and the controls. However, histopathological evaluation of placentas from the treatment groups showed that inflammatory reactions and calcifications compared to the pair-fed and ad libitum controls.

Conclusion: Administration of the 80% hydroalcoholic extract of E. schimperi fruit during the period of organogenesis in rats did not show a significant toxic effect on embryonic and fetal developmental indices. However, it might affect the structural integrity of the placenta as it is evidenced by inflammatory reactions and calcifications of decidua basalis of rat placenta.