Ataxia Telangiectasia-Mutated Is Activated but Not Required for Productive Autographa californica Multiple Nucleopolyhedrovirus Infection

J Virol. 2022 Nov 23;96(22):e0126922. doi: 10.1128/jvi.01269-22. Epub 2022 Oct 31.

Abstract

Multiplication of the invertebrate DNA baculoviruses activates the host DNA damage response (DDR), which promotes virus DNA replication. DDR signaling is initiated by the host insect's phosphatidylinositol-3 kinase-related kinases (PIKKs), including ataxia telangiectasia-mutated kinase (ATM). Like other PIKKs, ATM phosphorylates an array of host DDR proteins at serine/threonine glutamine (S/TQ) motifs, the result of which leads to cell cycle arrest, DNA repair, or apoptosis. To define the role of host PIKKs in baculovirus replication, we compared replication levels of the baculovirus prototype species Autographa californica multiple nucleopolyhedrovirus in permissive Spodoptera frugiperda (SF21) cells with and without ATM function. Caffeine, which inhibits multiple DDR kinases, and the ATM-specific inhibitors KU-55933 and KU-60019 each prevented phosphorylation of Spodoptera histone H2AX (SfH2AX), a recognized indicator of ATM activity. However, only caffeine reduced autographa californica multiple nucleopolyhedrovirus (AcMNPV)-induced bulk phosphorylation of S/TQ protein motifs. Furthermore, only caffeine, not KU-55933 or KU-60019, reduced AcMNPV yields, suggesting a limited role for ATM. To investigate further, we identified and edited the Spodoptera ATM gene (sfatm). Consistent with ATM's known functions, CRISPR/Cas9-mediated knockout of sfatm eliminated DNA damage-induced phosphorylation of DDR marker SfH2AX in SF21 cells. However, loss of sfatm failed to affect the levels of AcMNPV multiplication. These findings suggested that in the absence of the kinase SfATM, another caffeine-sensitive host DDR kinase promotes S/TQ phosphorylation and baculovirus multiplication. Thus, baculoviruses activate and utilize the host insect DDR in an ATM-independent manner. IMPORTANCE The DDR, while necessary for the maintenance and fidelity of the host genome, represents an important cellular response to viral infection. The prolific DNA baculoviruses activate and manipulate the invertebrate DDR by using mechanisms that positively impact virus multiplication, including virus DNA replication. As the key DDR initiator kinase, ATM was suspected to play a critical role in this host response. However, we show here that baculovirus AcMNPV activates an ATM-independent DDR. By identifying the insect host ATM ortholog (Spodoptera frugiperda SfATM) and evaluating genetic knockouts, we show that SfATM is dispensable for AcMNPV activation of the DDR and for virus replication. Thus, another PIKK, possibly the closely related kinase ATR (ATM- and Rad3-related kinase), is responsible for efficient baculovirus multiplication. These findings better define the host pathways used by invertebrates to engage viral pathogens, including DNA viruses.

Keywords: ATM kinases; AcMNPV; DNA damage response; DNA virus; H2AX; baculovirus; lepidopteran insect.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Ataxia Telangiectasia Mutated Proteins* / metabolism
  • Caffeine / pharmacology
  • Nucleopolyhedroviruses* / physiology
  • Spodoptera / genetics
  • Spodoptera / virology
  • Virus Replication

Substances

  • 2-(2,6-dimethylmorpholin-4-yl)-N-(5-(6-morpholin-4-yl-4-oxo-4H-pyran-2-yl)-9H-thioxanthen-2-yl)acetamide
  • Caffeine
  • Ataxia Telangiectasia Mutated Proteins

Supplementary concepts

  • Autographa californica multiple nuclear polyhedrosis virus