Utility of the W´BAL model in training programme design for masters cyclists

Eur J Sport Sci. 2023 Jul;23(7):1259-1268. doi: 10.1080/17461391.2022.2142675. Epub 2022 Nov 9.

Abstract

The present study aims to determine the utility of integrating balance model (W´BAL-INT) in designing interval training programmes as assessed by improvements in power output, critical power (CP), and W prime (W´) defined as the finite work capacity above CP. Fourteen male cyclists (age = 42 ± 7 yr, body mass = 69.6 ± 6.5 kg, height = 175 ± 5 cm, CP = 302 ± 32 W, relative CP = 4.35 ± 0.66 W·kg-1) were randomized into two training groups: Short-Medium-Long intervals (SML-INT; n = 7) or Long intervals (L-INT, n = 7) [training sessions separated by 72 h], along with 3-4 sessions of moderate intensity training per week, for 4 weeks. All sessions were designed to result in the complete depletion of the W´ as gauged by the W´BAL-INT. CP and W´ were assessed using the specified efforts (i.e. 12, 7 and 3 min) and calculated with the 2-parameter CP linear model. Training loads between the groups were compared using different metrics. CP improved in both the SML-INT and L-INT groups by 5 ± 4% and 6 ± 5% (p < 0.001) respectively, without significant changes in W´. Mean maximal power over 3, 7 and 12 min increased significantly in the SML-INT group by 5%, 4% and 9%, (p < 0.05) without significant changes in the L-INT group. There were no differences between groups in training zone distribution or training load using BikeScore and relative intensity, but there was significantly (p < 0.05) higher TRIMPS for the Long-INT group. Therefore, W´BAL model may prove to be a useful tool for coaches to construct SML-INT training programmes.HighlightsCP significantly improved with both training models during the present intervention and in power output in some of the time to exhaustion (TTE) trials, despite a difference in training load between the groups as assessed by TRIMPS.We recommend designing endurance training sessions based on the use of the W´BAL-INT model.The structured interval model can be an easy and standardized way for cyclists and coaches to monitor their potential for flat and mid-mountain stages.

Keywords: Road cycling; V̇O2 kinetics; W´ balance; optimizing performance; power output; time trial.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Adult
  • Bicycling
  • Endurance Training*
  • Humans
  • Linear Models
  • Male
  • Middle Aged
  • Oxygen Consumption*
  • Physical Endurance