Full-length fruit transcriptomes of southern highbush (Vaccinium sp.) and rabbiteye (V. virgatum Ait.) blueberry

BMC Genomics. 2022 Oct 29;23(1):733. doi: 10.1186/s12864-022-08935-5.

Abstract

Background: Blueberries (Vaccinium sp.) are native to North America and breeding efforts to improve blueberry fruit quality are focused on improving traits such as increased firmness, enhanced flavor and greater shelf-life. Such efforts require additional genomic resources, especially in southern highbush and rabbiteye blueberries.

Results: We generated the first full-length fruit transcriptome for the southern highbush and rabbiteye blueberry using the cultivars, Suziblue and Powderblue, respectively. The transcriptome was generated using the Pacific Biosciences single-molecule long-read isoform sequencing platform with cDNA pooled from seven stages during fruit development and postharvest storage. Raw reads were processed through the Isoseq pipeline and full-length transcripts were mapped to the 'Draper' genome with unmapped reads collapsed using Cogent. Finally, we identified 16,299 and 15,882 non-redundant transcripts in 'Suziblue' and 'Powderblue' respectively by combining the reads mapped to Northern Highbush blueberry 'Draper' genome and Cogent analysis. In both cultivars, > 80% of sequences were longer than 1,000 nt, with the median transcript length around 1,700 nt. Functionally annotated transcripts using Blast2GO were > 92% in both 'Suziblue' and 'Powderblue' with overall equal distribution of gene ontology (GO) terms in the two cultivars. Analyses of alternative splicing events indicated that around 40% non-redundant sequences exhibited more than one isoform. Additionally, long non-coding RNAs were predicted to represent 5.6% and 7% of the transcriptomes in 'Suziblue' and 'Powderblue', respectively. Fruit ripening is regulated by several hormone-related genes and transcription factors. Among transcripts associated with phytohormone metabolism/signaling, the highest number of transcripts were related to abscisic acid (ABA) and auxin metabolism followed by those for brassinosteroid, jasmonic acid and ethylene metabolism. Among transcription factor-associated transcripts, those belonging to ripening-related APETALA2/ethylene-responsive element-binding factor (AP2/ERF), NAC (NAM, ATAF1/2 and CUC2), leucine zipper (HB-zip), basic helix-loop-helix (bHLH), MYB (v-MYB, discovered in avian myeloblastosis virus genome) and MADS-Box gene families, were abundant. Further we measured three fruit ripening quality traits and indicators [ABA, and anthocyanin concentration, and texture] during fruit development and ripening. ABA concentration increased during the initial stages of fruit ripening and then declined at the Ripe stage, whereas anthocyanin content increased during the final stages of fruit ripening in both cultivars. Fruit firmness declined during ripening in 'Powderblue'. Genes associated with the above parameters were identified using the full-length transcriptome. Transcript abundance patterns of these genes were consistent with changes in the fruit ripening and quality-related characteristics.

Conclusions: A full-length, well-annotated fruit transcriptome was generated for two blueberry species commonly cultivated in the southeastern United States. The robustness of the transcriptome was verified by the identification and expression analyses of multiple fruit ripening and quality-regulating genes. The full-length transcriptome is a valuable addition to the blueberry genomic resources and will aid in further improving the annotation. It will also provide a useful resource for the investigation of molecular aspects of ripening and postharvest processes.

Keywords: Fruit genomics; Fruit quality; Postharvest; Ripening; Transcriptome.

MeSH terms

  • Abscisic Acid / metabolism
  • Anthocyanins
  • Blueberry Plants* / genetics
  • Ethylenes / metabolism
  • Fruit
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant
  • Plant Breeding
  • Transcriptome
  • Vaccinium* / genetics
  • Vaccinium* / metabolism

Substances

  • Anthocyanins
  • Abscisic Acid
  • Ethylenes