Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review

Mol Cell Biochem. 2023 Jun;478(6):1307-1324. doi: 10.1007/s11010-022-04587-x. Epub 2022 Oct 29.

Abstract

Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products (AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays a huge role in various neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.

Keywords: Advanced glycation end products; Insulin resistance; Neurodegenerative diseases; PI3/Akt/mTOR pathway.

Publication types

  • Review

MeSH terms

  • Diabetes Mellitus, Type 2*
  • Female
  • Glycation End Products, Advanced / metabolism
  • Humans
  • Insulin / pharmacology
  • Insulin Resistance*
  • Neurodegenerative Diseases* / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Insulin
  • Proto-Oncogene Proteins c-akt
  • Phosphatidylinositol 3-Kinases
  • TOR Serine-Threonine Kinases
  • Glycation End Products, Advanced
  • MTOR protein, human