N6-methyladenosine demethylase FTO enhances chemo-resistance in colorectal cancer through SIVA1-mediated apoptosis

Mol Ther. 2023 Feb 1;31(2):517-534. doi: 10.1016/j.ymthe.2022.10.012. Epub 2022 Oct 28.

Abstract

N6-methyladenosine (m6A) is the most pervasive RNA modification and is recognized as a novel epigenetic regulation in RNA metabolism. Although the m6A modification involves various physiological processes, its roles in drug resistance in colorectal cancer (CRC) still remain unknown. We analyzed the RNA expression profile of m6A/A (%) with MRM mass spectrometry in human 5-fluorouracil (5-FU)-resistant CRC tissues, and used the m6A RNA immunoprecipitation assay to validate the m6A-regulated target. Our results have shown that the m6A demethylase FTO was up-regulated in human primary and 5-FU-resistant CRC. Depletion of FTO decreased cell growth, colony formation and metastasis in 5-FU-resistant CRC cells in vitro and in vivo. Mechanistically, we identified SIVA1, a critical apoptotic gene, as a key downstream target of the FTO-mediated m6A demethylation. The m6A demethylation of SIVA1 at the CDS region induced its mRNA degradation via a YTHDF2-dependent mechanism. The SIVA1 levels were negatively correlated with the FTO levels in clinical CRC tissues. Notably, inhibition of FTO significantly reduced the tolerance of 5-FU in 5-FU-resistant CRC cells via the FTO-SIVA1 axis, whereas SIVA1-depletion could restore the m6A-dependent 5-FU sensitivity in CRC cells. In summary, our findings demonstrate a critical role of FTO as an m6A demethylase enhancing chemo-resistance in CRC cells, and suggest that FTO inhibition may restore the sensitivity of chemo-resistant CRC cells to 5-FU.

Keywords: FTO; N6-methyladenosine; SIVA1; chemo-resistance; colorectal cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO / genetics
  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO / metabolism
  • Apoptosis / genetics
  • Apoptosis Regulatory Proteins / metabolism
  • Colorectal Neoplasms* / drug therapy
  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / metabolism
  • Epigenesis, Genetic*
  • Fluorouracil / pharmacology
  • Humans
  • RNA

Substances

  • RNA
  • Fluorouracil
  • SIVA1 protein, human
  • Apoptosis Regulatory Proteins
  • FTO protein, human
  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO