New developments in translational microcirculatory research

Am J Physiol Heart Circ Physiol. 2022 Dec 1;323(6):H1167-H1175. doi: 10.1152/ajpheart.00566.2022. Epub 2022 Oct 28.

Abstract

Microvascular disease plays a critical role in systemic end-organ dysfunction, and treatment of microvascular pathologies may greatly reduce cardiovascular morbidity and mortality. The Call for Papers collection: New Developments in Translational Microcirculatory Research highlights key advances in our understanding of the role of microvessels in the development of chronic diseases as well as therapeutic strategies to enhance microvascular function. This Mini Review provides a concise summary of these advances and draws from other relevant research to provide the most up-to-date information on the influence of cutaneous, cerebrovascular, coronary, and peripheral microcirculation on the pathophysiology of obesity, hypertension, cardiovascular aging, peripheral artery disease, and cognitive impairment. In addition to these disease- and location-dependent research articles, this Call for Papers includes state-of-the-art reviews on coronary endothelial function and assessment of microvascular health in different organ systems, with an additional focus on establishing rigor and new advances in clinical trial design. These articles, combined with original research evaluating cellular, exosomal, pharmaceutical, exercise, heat, and dietary interventional therapies, establish the groundwork for translating microcirculatory research from bench to bedside. Although numerous studies in this collection are focused on human microcirculation, most used robust preclinical models to probe mechanisms of pathophysiology and interventional benefits. Future work focused on translating these findings to humans are necessary for finding clinical strategies to prevent and treat microvascular dysfunction.

Keywords: clinical trial; diabetes; endothelial dysfunction; hypertension; microcirculation.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Endothelium
  • Humans
  • Hypertension*
  • Microcirculation / physiology
  • Microvessels
  • Peripheral Vascular Diseases*