Superlattice-Induced Variations in Morphological and Emission Properties of GaInN/GaN Multiquantum Nanowire-Based Micro-LEDs

ACS Appl Mater Interfaces. 2022 Oct 27. doi: 10.1021/acsami.2c13648. Online ahead of print.

Abstract

Core-shell GaInN/GaN multiquantum shell (MQS) nanowires (NWs) are gaining great attention for high-efficiency micro-light-emitting diodes (micro-LEDs) owing to the minimized etching region on their sidewall, nonpolar or semipolar emission planes, and ultralow density of dislocations. In this study, we evaluated the changes in NW morphologies and the corresponding device properties induced by GaInN/GaN superlattice (SL) structures. The cathodoluminescence intensities of the samples with 20 and 40 pairs of SLs were about 2.2 and 3.4 times higher, respectively, than that of the sample without SLs. The high-resolution scanning transmission electron microscopy (STEM) inspection confirmed that the high growth temperature of SLs prevented growth in the semipolar plane region close to the n-GaN core. A similar phenomenon was also observed for the GaN quantum barriers of the semipolar MQS region under a high growth temperature of 810 °C. This phenomenon was ascribed to the passivation of the semipolar plane surface by hydrogen atoms and the high probability of decomposition through NH3 or N-H-related bonds. Although no clear SL grew on the semipolar plane near the n-core region, the top area of the nonpolar plane SL was expected to adequately suppress the point defects propagating from the n-GaN core to the semipolar plane MQS. The electroluminescence (EL) spectra and light output curves demonstrated a clear enhancement of more than 3-folds compared to the fabricated micro-LEDs without SL structures, which was associated with the improved crystalline quality of the MQS and enlarged area of the semipolar planes. Moreover, by increasing the growth time of GaN quantum barriers, the EL emission intensity of the micro-LED devices exhibited a 4-fold improvement owing to the reduced carrier overflow in the thickened GaN barriers on the semipolar (11̅01) planes. Thus, the results verified the possibility of realizing highly efficient NW-based micro-LEDs by optimizing the NW morphology using SL structures.

Keywords: GaInN/GaN; c-plane emission; emission area; micro-LED; multiquantum shell; nanowire; superlattice (SL).