Enhanced Authenticated Key Agreement for Surgical Applications in a Tactile Internet Environment

Sensors (Basel). 2022 Oct 18;22(20):7941. doi: 10.3390/s22207941.

Abstract

The Tactile Internet enables physical touch to be transmitted over the Internet. In the context of electronic medicine, an authenticated key agreement for the Tactile Internet allows surgeons to perform operations via robotic systems and receive tactile feedback from remote patients. The fifth generation of networks has completely changed the network space and has increased the efficiency of the Tactile Internet with its ultra-low latency, high data rates, and reliable connectivity. However, inappropriate and insecure authentication key agreements for the Tactile Internet may cause misjudgment and improper operation by medical staff, endangering the life of patients. In 2021, Kamil et al. developed a novel and lightweight authenticated key agreement scheme that is suitable for remote surgery applications in the Tactile Internet environment. However, their scheme directly encrypts communication messages with constant secret keys and directly stores secret keys in the verifier table, making the scheme vulnerable to possible attacks. Therefore, in this investigation, we discuss the limitations of the scheme proposed by Kamil scheme and present an enhanced scheme. The enhanced scheme is developed using a one-time key to protect communication messages, whereas the verifier table is protected with a secret gateway key to mitigate the mentioned limitations. The enhanced scheme is proven secure against possible attacks, providing more security functionalities than similar schemes and retaining a lightweight computational cost.

Keywords: 5G; Tactile Internet; authentication; key agreement; robotic arm; surgery.

MeSH terms

  • Computer Security*
  • Confidentiality
  • Humans
  • Internet
  • Telemedicine*
  • Touch