Physical Properties of Fast-Growing Wood-Polymer Nano Composite Synthesized through TiO2 Nanoparticle Impregnation

Polymers (Basel). 2022 Oct 21;14(20):4463. doi: 10.3390/polym14204463.

Abstract

Mangium (Acacia mangium Willd.) is a fast-growing wood that is widely grown in Indonesia. The impregnation method is needed to improve the qualities of the wood. In this study, TiO2 nanoparticle (79.17 nm) was produced using the hydrothermal method. The purpose of this study was to analyze the effect of TiO2 nanoparticle impregnation on the density and dimensional stability of mangium and the effectiveness of the presence of TiO2 nanoparticle in wood in degrading pollutants. The mangium samples (2 cm × 2 cm × 2 cm) were placed inside impregnation tube. The impregnation solutions included water (untreated), 1% TiO2 nanoparticle, and 5% TiO2 nanoparticles. The samples were analyzed for density, weight percent gain (WPG) dan bulking effect (BE). Samples were also analyzed by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). TiO2 nanoparticle resulted in an increase in density, WPG, and BE-treated mangium. Based on XRD and FTIR results, TiO2 nanoparticle was successfully impregnated into mangium wood. Scanning electron microscopy-energy-dispersive X-ray spectroscopy analysis indicated that TiO2 nanoparticle covered the surface of the wood cells. The TiO2-impregnated mangium wood has a higher photocatalyst activity than untreated, indicating better protection from UV radiation and pollutants.

Keywords: TiO2 nanoparticle; impregnation; mangium; photocatalyst; physical properties.

Grants and funding

This research was funded by Ministry of Education, Culture and Research and Technology of Indonesia (Grant No. 0267/E5/AK.04/2022 and Grant No. 082/E5/PG.02.00.PT/2022).