Novel Design of Superhydrophobic and Anticorrosive PTFE and PAA + β - CD Composite Coating Deposited by Electrospinning, Spin Coating and Electrospraying Techniques

Polymers (Basel). 2022 Oct 16;14(20):4356. doi: 10.3390/polym14204356.

Abstract

A superhydrophobic composite coating consisting of polytetrafluoroethylene (PTFE) and poly(acrylic acid)+ β-cyclodextrin (PAA + β-CD) was prepared on an aluminum alloy AA 6061T6 substrate by a three-step process of electrospinnig, spin coating, and electrospraying. The electrospinning technique is used for the fabrication of a polymeric binder layer synthesized from PAA + β-CD. The superhydrophilic characteristic of the electrospun PAA + β-CD layer makes it suitable for the absorption of an aqueous suspension with PTFE particles in a spin-coating process, obtaining a hydrophobic behavior. Then, the electrospraying of a modified PTFE dispersion forms a layer of distributed PTFE particles, in which a strong bonding of the particles with each other and with the PTFE particles fixed in the PAA + β-CD fiber matrix results in a remarkable improvement of the particles adhesion to the substrate by different heat treatments. The experimental results corroborate the important role of obtaining hierarchical micro/nano multilevel structures for the optimization of superhydrophobic surfaces, leading to water contact angles above 170°, very low contact angle of hysteresis (CAH = 2°) and roll-off angle (αroll−off < 5°). In addition, a superior corrosion resistance is obtained, generating a barrier to retain the electrolyte infiltration. This study may provide useful insights for a wide range of applications.

Keywords: PAA + β-CD; PTFE; adhesion resistance; corrosion resistance; electrospinning; electrospraying; low water roll-off angle; super hydrophobic.

Grants and funding

Project RTI2018-096262-B-C41–MAITAI, funded by MCIN/AEI/10.13039/501100011033 and by ERDF “A way of making Europe”. Grant PRE2019-090656: funded by MCIN/AEI/10.13039/501100011033 and by ESF “Investing in your future”. Project PJUPNA1929 funded by MCIN/AEI/10.13039/501100011033 and by ERDF “A way of making Europe” and by BEI.