Methylene Blue-Based Combination Therapy with Amodiaquine Prevents Severe Malaria in an Experimental Rodent Model

Pharmaceutics. 2022 Sep 24;14(10):2031. doi: 10.3390/pharmaceutics14102031.

Abstract

Untreated malaria can progress rapidly to severe forms (<24 h). Moreover, resistance to antimalarial drugs is a threat to global efforts to protect people from malaria. Given this, it is clear that new chemotherapy must be developed. We contribute new data about using methylene blue (MB) to cure malaria and cerebral malaria in a combined therapy with common antimalarial drugs, including mefloquine (MQ) and amodiaquine (AQ). A C57BL6/J mouse model was used in an experimental cerebral malaria model. Mice were infected with Plasmodium berghei ANKA on Day 0 (D0) and the treatment started on D3 (nearly 1% parasitaemia) with AQ, MQ or MB alone or in combination with AQ or MQ. AQ, MQ and MB alone were unable to prevent cerebral malaria as part of a late chemotherapy. MB-based combination therapies were efficient even if treatment began at a late stage. We found a significant difference in survival rate (p < 0.0001) between MBAQ and the untreated group, but also with the AQ (p = 0.0024) and MB groups (p < 0.0001). All the infected mice treated with MB in combination with AQ were protected from cerebral malaria. Partial protection was demonstrated with MB associated with MQ. In this group, a significant difference was found between MBMQ and the untreated group (p < 0.0001), MQ (p = 0.0079) and MB (p = 0.0039). MB associated with AQ would be a good candidate for preventing cerebral malaria.

Keywords: Plasmodium berghei; antimalarial drug; artemisinin; in vivo; malaria; methylene blue; resistance.