Rational Design and Synthesis of New Selective COX-2 Inhibitors with In Vivo PGE2-Lowering Activity by Tethering Benzenesulfonamide and 1,2,3-Triazole Pharmacophores to Some NSAIDs

Pharmaceuticals (Basel). 2022 Sep 20;15(10):1165. doi: 10.3390/ph15101165.

Abstract

New selective COX-2 inhibitors were designed and synthesized by tethering 1,2,3-triazole and benzenesulfonamide pharmacophores to some NSAIDs. Compounds 6b and 6j showed higher in vitro COX-2 selectivity and inhibitory activity (IC50 = 0.04 µM and S.I. = 329 and 312, respectively) than celecoxib (IC50 = 0.05 µM and S.I. = 294). Compound 6e revealed equipotent in vitro COX-2 inhibitory activity to celecoxib. Furthermore, 6b and 6j expressed more potent relief of carrageenan-induced paw edema thickness in mice than celecoxib, with ED50 values of 11.74 µmol/kg and 13.38 µmol/kg vs. 16.24 µmol/kg, respectively. Compounds 6b and 6j inhibited the production of PGE2 with a % inhibition of PGE2 production of 90.70% and 86.34%, respectively, exceeding celecoxib's percentage (78.62%). Moreover, 6b and 6j demonstrated a gastric safety profile comparable to celecoxib. In conclusion, compounds 6b and 6j better achieved the target goal as more potent and selective COX-2 inhibitors than celecoxib in vitro and in vivo.

Keywords: 1,2,3-triazole; COX-2 inhibitors; NSAIDs; in vivo anti-inflammatory; sulfonamides.

Grants and funding

This research received no external funding.