Progress in Studies of Surface Nanotextures and Coatings with Nanomaterials on Glass for Anti-Dust Functionality

Nanomaterials (Basel). 2022 Oct 19;12(20):3677. doi: 10.3390/nano12203677.

Abstract

Dust pollution presents a wide range of adverse effects to product functionalities and the quality of human life. For instance, when dust particles deposit on solar photovoltaic panels, sunlight absorption is significantly reduced, and solar-to-electrical energy conversion yield may be lowered by 51%- Conventional (manual) dust removal methods are costly, consume significant material resources, and cause irreparable damage to the solar glass surface. Therefore, it is critical to develop glass surfaces that can clean themselves or are easily cleaned by natural forces. Many approaches have been attempted to reduce dust deposition, such as developing superhydrophobic surfaces and preparing anti-static surfaces. This paper reviews the recent progress in studies of anti-dust and cleaning mechanisms or methodologies, which include investigation into micro- and nano-sized dust properties, dust deposition processes and adhesion mechanisms to surfaces, and the state-of-the-art approaches to anti-dust and easy-cleaning functions that tailor surface micro-/nanotextures, lowering surface energy via nanocoatings, and enhancing anti-static properties with nanomaterials. We compare the advantages and disadvantages of various approaches and discuss the research prospects. We envision that future research will be focused on developing transparent surfaces with multiple dust-proof functions to cope with dust-burdening operating environments.

Keywords: anti-dust; anti-static; easy cleaning; superhydrophobic; surface micro and nanotextures.

Publication types

  • Review