PZT-Film-Based Piezoelectric Micromachined Ultrasonic Transducer with I-Shaped Composite Diaphragm

Micromachines (Basel). 2022 Sep 26;13(10):1597. doi: 10.3390/mi13101597.

Abstract

We proposed a PZT-film-based piezoelectric micromachined ultrasonic transducer (pMUT) with an I-shaped composite diaphragm to improve the sensitivity and resonant frequency of pMUTs with the same diaphragm area. The finite element method (FEM) simulation results indicated that the pMUT with an I-shaped composite diaphragm had relatively high sensitivity and resonant frequency. The pMUT with an I-shaped diaphragm had a 36.07% higher resonant frequency than a pMUT with a circular diaphragm. The pMUT with an I-shaped diaphragm had a 3.65 dB higher loop gain (loss) than a pMUT with a rectangular diaphragm. The piezoelectric layer thickness of the pMUT with an I-shaped composite diaphragm was then optimized. Maximum loop gain (loss) was reached when the piezoelectric layer thickness was 8 μm. The pMUT with an I-shaped composite diaphragm was fabricated using the MEMS method, and its performance was evaluated.

Keywords: I-shaped composite diaphragm; loop gain (loss); pMUT; resonant frequency.