Synthesis of Anion Exchange Membranes Containing PVDF/PES and Either PEI or Fumion®

Membranes (Basel). 2022 Sep 30;12(10):959. doi: 10.3390/membranes12100959.

Abstract

In this work, the preparation of dense blended membranes, from blends of poly(vinylidene fluoride) (PVDF), poly(ether sulfone) (PES) and polyethyleneimine (PEI) or Fumion®, with possible applications in alkaline fuel cell (AEMFC) is reported. The blended PEI/Fumion® membranes were prepared under a controlled air atmosphere by a solvent evaporation method, and were characterized regarding water uptake, swelling ratio, thermogravimetric analysis (TGA), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), ion exchange capacity (IEC), OH- conductivity and novel hydroxide ion exchange rate (HIER), which is related to the mass transport capacity of the OH- ions through the membrane. The effect of the chemical composition on its morphological and anion exchange properties was evaluated. It was expected that the usage of a commercial ionomer Fumion®, in the blended membranes would result in better features in the electrical/ionic conductivity behaviour. However, two of the membranes containing PEI exhibited a higher HIER and OH- conductivity than Fumion® membranes, and were excellent option for potential applications in AEMFC, considering their performance and the cost of Fumion®-based membranes.

Keywords: Fumion®; alkaline fuel cell; anion exchange membrane; blended membrane; membrane characterization; phase inversion method.