Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni0.1Cu0.9S Nanoflower

Biosensors (Basel). 2022 Oct 15;12(10):874. doi: 10.3390/bios12100874.

Abstract

Nanozymes, as artificial enzymes with the biological action of natural enzymes, have enormous potential in the fields of disease diagnosis, bacteriostasis, biosensing, etc. In this work, the Ni0.1Cu0.9S nanoflower was successfully synthesized through a one-step hydrothermal method. A combined strategy of Ni doping and morphology design was employed to adjust its electronic structure and active sites, endowing the Ni0.1Cu0.9S nanoflower with excellent peroxidase-like activity. Therefore, it can catalyze the decomposition of H2O2 to generate •OH with higher antibacterial activity, establishing a broad-spectrum antibacterial system based on the Ni0.1Cu0.9S nanoflower against E. coli and S. aureus, which avoids the harm of a high concentration of H2O2. Additionally, the colorless substrate TMB can be catalytically oxidized into blue ox-TMB via •OH. As a result, a colorimetric technique with rapid and accurate detection of ascorbic acid (AA) by the unaided eye was designed, in view of the specific inhibition effect towards the oxidation of TMB. This detection platform has a wide linear range (10~800 μM) with a low limit of detection (0.84 μM) and exhibits a satisfactory selectivity toward the detection of AA. This study sheds new light on the application of copper-containing nanozymes in the fields of biomedicine and bioassay.

Keywords: antibacterial application; biosensing; copper-containing nanozymes; peroxidase mimicase; reactive oxygen species.

MeSH terms

  • Anti-Bacterial Agents
  • Ascorbic Acid
  • Biosensing Techniques* / methods
  • Copper / chemistry
  • Escherichia coli
  • Hydrogen Peroxide
  • Peroxidase*
  • Peroxidases / chemistry
  • Staphylococcus aureus

Substances

  • Peroxidase
  • Hydrogen Peroxide
  • Copper
  • Peroxidases
  • Ascorbic Acid
  • Anti-Bacterial Agents