Soy Isoflavones Protect Neuronal PC12 Cells against Hypoxic Damage through Nrf2 Activation and Suppression of p38 MAPK and AKT-mTOR Pathways

Antioxidants (Basel). 2022 Oct 16;11(10):2037. doi: 10.3390/antiox11102037.

Abstract

Isoflavones are a class of major phenolic compounds, derived from soybeans, that possess unique therapeutic and biological properties. The possible mechanisms of isoflavone-mediated protection of neuronal PC12 cells against hypoxic damage was investigated in this study. Isoflavones showed potential neuroprotective effects by increasing cell viability, decreasing the level of reactive oxygen species (ROS), and inhibiting apoptosis and cell cycle arrest in cobalt chloride (CoCl2)-induced hypoxic damage. A Western blot analysis indicated that isoflavones decreased apoptosis by up-regulating the Bcl-xL protein and down-regulating the Bax protein. They further reduced the S-phase fraction of the cell cycle by down-regulating the p21 protein and up-regulating the cyclin A protein levels. Additionally, isoflavones activated Nrf2 protein translocation and inhibited the p38 MAPK and AKT-mTOR pathways. A molecular docking analysis further revealed that isoflavones displayed a potential competitive interaction with the Nrf2 protein for Keap1. Our findings suggest that isoflavones could be a potent neuroprotective phytochemical in soybeans and their products.

Keywords: apoptosis; cell cycle; molecular docking analysis; neuroprotective effects; phenolic compounds.