Neurobiological Signatures of Auditory False Perception and Phantom Perception as a Consequence of Sensory Prediction Errors

Biology (Basel). 2022 Oct 13;11(10):1501. doi: 10.3390/biology11101501.

Abstract

In this study, we hypothesized that top-down sensory prediction error due to peripheral hearing loss might influence sensorimotor integration using the efference copy (EC) signals as functional connections between auditory and motor brain areas. Using neurophysiological methods, we demonstrated that the auditory responses to self-generated sound were not suppressed in a group of patients with tinnitus accompanied by significant hearing impairment and in a schizophrenia group. However, the response was attenuated in a group with tinnitus accompanied by mild hearing impairment, similar to a healthy control group. The bias of attentional networks to self-generated sound was also observed in the subjects with tinnitus with significant hearing impairment compared to those with mild hearing impairment and healthy subjects, but it did not reach the notable disintegration found in those in the schizophrenia group. Even though the present study had significant constraints in that we did not include hearing loss subjects without tinnitus, these results might suggest that auditory deafferentation (hearing loss) may influence sensorimotor integration process using EC signals. However, the impaired sensorimotor integration in subjects with tinnitus with significant hearing impairment may have resulted from aberrant auditory signals due to sensory loss, not fundamental deficits in the reafference system, as the auditory attention network to self-generated sound is relatively well preserved in these subjects.

Keywords: Bayesian brain; auditory hallucination; auditory perception; efference copy; tinnitus.