Photocatalytic Overall Water Splitting over PbTiO3 Modulated by Oxygen Vacancy and Ferroelectric Polarization

J Am Chem Soc. 2022 Nov 9;144(44):20342-20350. doi: 10.1021/jacs.2c08177. Epub 2022 Oct 26.

Abstract

Ferroelectric materials hold great promise in the field of photocatalytic water splitting due to their spontaneous polarization that sets up an inherent internal field for the spatial separation of photogenerated charges. The ferroelectric polarization, however, is generally accompanied by some intrinsic defects, particularly oxygen vacancies, whose impact upon photocatalysis is far from being fully understood and modulated. Here, we have studied the role of oxygen vacancies over the photocatalytic behavior of single-domain PbTiO3 through a combination of theoretical and experimental viewpoints. Our results indicate that the oxygen vacancies in the negatively polarized facet (001) are active sites for water oxidation into O2, while the defect-free sites prefer H2O2 as the oxidation product. The apparent quantum yield at 435 nm for photocatalytic overall water splitting with PbTiO3/Rh/Cr2O3 is determined to be 0.025%, which is remarkable for single undoped metal oxide-based photocatalysts. Furthermore, the strong correlation among oxygen vacancies, polarization strength, and photocatalytic activity is properly reflected by charge separation conditions in the single-domain PbTiO3. This work clarifies the crucial role of oxygen vacancies during photocatalytic reactions of PbTiO3, which provides a useful guide to the design of efficient ferroelectric photocatalysts and their water redox reaction pathways.