TriD-LAMP: A pump-free microfluidic chip for duplex droplet digital loop-mediated isothermal amplification analysis

Anal Chim Acta. 2022 Nov 15:1233:340513. doi: 10.1016/j.aca.2022.340513. Epub 2022 Oct 13.

Abstract

Digital nucleic acid amplification techniques are powerful and attractive approaches for providing sensitive and absolute quantification in biology. Among these, digital loop-mediated isothermal amplification (dLAMP) shows the potential for field detection, since its robustness and independence from thermal cycling. The key of dLAMP is to generate a large number of individual droplets or microwells. However, an auxiliary precision pump is always required for sample digitalization. In addition, current systems for droplet dLAMP usually need to transfer the droplets after digitalization or amplification. Herein, we developed and evaluated a pump-free microfluidic chip for duplex droplet dLAMP (TriD-LAMP) detection. This chip was designed based on step emulsification and contains a droplet generation zone and a droplet storage zone. Droplets are formed through the step due to the difference in Laplace pressure. There are 64 parallel nozzles that could generate tens of thousands of uniform droplets manually (variation <5%). The storage zone for droplets collection was previously filled with oil containing fluorosurfactant that keeps the droplets from fusing and evaporation during the amplification. Therefore, this custom chip is able to perform all stages of the dLAMP process without transferring droplets. Combined with the optimized fluorescent probe method, the chip achieves accurate quantification of the E. coli DNA down to 19.8 copies/μL. As a proof of concept, the simultaneous quantification of two targets was successfully realized on this custom chip. Conclusively, this integrated, pump-free TriD-LAMP chip can provide a promising tool for multiple targets detection in clinical diagnostics and point-of-care applications.

Keywords: Digital analysis; Droplet; Dual detection; Microfluidic chip; Nucleic acids.

MeSH terms

  • DNA
  • Escherichia coli / genetics
  • Fluorescent Dyes
  • Microfluidic Analytical Techniques* / methods
  • Microfluidics* / methods
  • Nucleic Acid Amplification Techniques / methods

Substances

  • Fluorescent Dyes
  • DNA

Supplementary concepts

  • LAMP assay