Hypoxic-induced resting ventilatory and circulatory responses under multistep hypoxia is related to decline in peak aerobic capacity in hypoxia

J Physiol Anthropol. 2022 Oct 24;41(1):36. doi: 10.1186/s40101-022-00310-3.

Abstract

Background: Several factors have been shown to contribute to hypoxic-induced declined in aerobic capacity. In the present study, we investigated the effects of resting hypoxic ventilatory and cardiac responses (HVR and HCR) on hypoxic-induced declines in peak oxygen uptake ([Formula: see text]O2peak).

Methods: Peak oxygen uptakes was measured in normobaric normoxia (room air) and hypoxia (14.1% O2) for 10 young healthy men. The resting HVR and HCR were evaluated at multiple steps of hypoxia (1 h at each of 21, 18, 15 and 12% O2). Arterial desaturation (ΔSaO2) was calculate by the difference between SaO2 at normoxia-at each level of hypoxia (%). HVR was calculate by differences in pulmonary ventilation between normoxia and each level of hypoxia against ΔSaO2 (L min-1 %-1 kg-1). Similarly, HCR was calculated by differences in heart rate between normoxia and each level of hypoxia against ΔSaO2 (beats min-1 %-1).

Results: [Formula: see text]O2peak significantly decreased in hypoxia by 21% on average (P < 0.001). HVR was not associated with changes in [Formula: see text]O2peak. ΔSaO2 from normoxia to 18% or 15% O2 and HCR between normoxia and 12% O2 were associated with changes in [Formula: see text]O2peak (P < 0.05, respectively). The most optimal model using multiple linear regression analysis found that ΔHCR at 12% O2 and ΔSaO2 at 15% O2 were explanatory variables (adjusted R2 = 0.580, P = 0.02).

Conclusion: These results suggest that arterial desaturation at moderate hypoxia and heart rate responses at severe hypoxia may account for hypoxic-induced declines in peak aerobic capacity, but ventilatory responses may be unrelated.

Keywords: Arterial oxygen saturation; Heart rate; Multiple regression analysis; Pulmonary ventilation.

MeSH terms

  • Heart Rate
  • Humans
  • Hypoxia*
  • Male
  • Oxygen
  • Oxygen Consumption* / physiology
  • Pulmonary Ventilation

Substances

  • Oxygen