Conceptual methodological framework for the resilience of biogeochemical services to heavy metals stress

J Environ Manage. 2023 Jan 1;325(Pt B):116401. doi: 10.1016/j.jenvman.2022.116401. Epub 2022 Oct 24.

Abstract

The idea of linking stressors, services providing units (SPUs), and ecosystem services (ES) is ubiquitous in the literature, although is currently not applied in areas contaminated with heavy metals (HMs), This integrative literature review introduces the general form of a deterministic conceptual model of the cross-scale effect of HMs on biogeochemical services by SPUs with a feedback loop, a cross-scale heuristic concept of resilience, and develops a method for applying the conceptual model. The objectives are 1) to identify the clusters of existing research about HMs effects on ES, biodiversity, and resilience to HMs stress, 2) to map the scientific fields needed for the conceptual model's implementation, identify institutional constraints for inter-disciplinary cooperation, and propose solutions to surpass them, 3) to describe how the complexity of the cause-effect chain is reflected in the research hypotheses and objectives and extract methodological consequences, and 4) to describe how the conceptual model can be implemented. A nested analysis by CiteSpace of a set of 16,176 articles extracted from the Web of Science shows that at the highest level of data aggregation there is a clear separation between the topics of functional traits, stoichiometry, and regulating services from the typical issues of the literature about HMs, biodiversity, and ES. Most of the resilience to HMs stress agenda focuses on microbial communities. General topics such as the biodiversity-ecosystem function relationship in contaminated areas are no longer dominant in the current research, as well as large-scale problems like watershed management. The number of Web of Science domains that include the analyzed articles is large (26 up to 87 domains with at least ten articles, depending on the sub-set), but thirteen domains account for 70-80% of the literature. The complexity of approaches regarding the cause-effect chain, the stressors, the biological and ecological hierarchical level and the management objectives was characterized by a detailed analysis of 60 selected reviews and 121 primary articles. Most primary articles approach short causal chains, and the number of hypotheses or objectives by article tends to be low, pointing out the need for portfolios of complementary research projects in coherent inter-disciplinary programs and innovation ecosystems to couple the ES and resilience problems in areas contaminated with HMs. One provides triggers for developing innovation ecosystems, examples of complementary research hypotheses, and an example of technology transfer. Finally one proposes operationalizing the conceptual methodological model in contaminated socio-ecological systems by a calibration, a sensitivity analysis, and a validation phase.

Keywords: Biodiversity; Ecosystem services; Functional traits; Heavy metals; Innovation ecosystem; Resilience.

Publication types

  • Review

MeSH terms

  • Biodiversity
  • Ecosystem*
  • Metals, Heavy*
  • Models, Theoretical

Substances

  • Metals, Heavy