Stress induced production of plant secondary metabolites in vegetables: Functional approach for designing next generation super foods

Plant Physiol Biochem. 2022 Dec 1:192:252-272. doi: 10.1016/j.plaphy.2022.09.034. Epub 2022 Oct 19.

Abstract

Plant secondary metabolites are vital for human health leading to the gain the access to natural products. The quality of crops is the result of the interaction of different biotic and abiotic factors. Abiotic stresses during plant growth may reduce the crop performance and quality of the produce. However, abiotic stresses can result in numerous physiological, biochemical, and molecular responses in plants, aiming to deal with these conditions. Abiotic stresses are also elicitors of the biosynthesis of plant secondary metabolites in plants which possess plant defense mechanisms as well as human health benefits such as anti-inflammatory, antioxidative properties etc. Plants either synthesize new compounds or alter the concentration of bioactive compounds. Due to increasing attention towards the production of bioactive compounds, the understanding of crop responses to abiotic stresses in relation to the biosynthesis of bioactive compounds is critical. Plants alter their metabolism at the genetic level in response to different abiotic stresses resulting the changes in secondary metabolite production. Transcriptional factors regulate genes responsible for secondary metabolite biosynthesis in several plants under stress conditions. Understanding the signaling pathways involved in the secondary metabolite biosynthesis has become easy with the use of molecular biology. Therefore, aim of writing the review is to focus on secondary metabolite production in vegetable crops, their health benefits and transcription regulation under various abiotic stresses.

Keywords: Abiotic stress; Bioactive compounds; Health benefits; Pathways; Transcription.

Publication types

  • Review