Engineering porous membranes mimicking in vivo basement membrane for organ-on-chips applications

Biomicrofluidics. 2022 Oct 20;16(5):051301. doi: 10.1063/5.0101397. eCollection 2022 Sep.

Abstract

Porous membrane-based microfluidic chips are frequently used for developing in vitro tissue-barrier models, the so-called tissue barriers-on-chips (TBoCs). The porous membrane in a TBoC plays a crucial role as an alternative to an in vivo basement membrane (BM). To improve the physiological relevance of an artificial porous membrane, it should possess complex BM-like characteristics from both biophysical and biochemical perspectives. For practical use, artificial membranes should have high mechanical robustness, and their fabrication processes should be conducive to mass production. There have been numerous approaches to accomplishing these requirements in BM-like porous membranes. Extracellular matrix (ECM) hydrogels have emerged as physiologically relevant materials for developing artificial BMs; they remarkably improve the phenotypes and functions of both cells and their layers when compared to previous synthetic porous membranes. However, for practical use, the poor mechanical robustness of ECM membranes needs to be improved. Recently, an advanced ECM membrane reinforced with a nanofiber scaffold has been introduced that possesses both BM-like characteristics and practical applicability. This advanced ECM membrane is expected to promote not only in vivo-like cellular functions but also cellular responses to drugs, which in turn further facilitates the practical applications of TBoCs.