Complexation and Extraction Studies of Trivalent Actinides and Lanthanides with Water-Soluble and CHON-Compatible Ligands for the Selective Extraction of Americium

Inorg Chem. 2022 Nov 7;61(44):17719-17729. doi: 10.1021/acs.inorgchem.2c02871. Epub 2022 Oct 23.

Abstract

Novel hydrophilic ligands to selectively separate Am(III) are synthesized: 3,3'-([2,2'-bipyridine]-6,6'-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(propan-1-ol) (PrOH-BPTD) and 3,3'-([2,2'-bipyridine]-6,6'-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(ethan-1-ol) (EtOH-BPTD). The complexation of An(III) and Ln(III) with PrOH- and EtOH-BPTD is studied by time-resolved laser fluorescence spectroscopy. [ML2]3+ is found for both Cm(III) and Eu(III), while [ML]3+ is only formed with Cm(III). Stability constants show a preferential coordination of Cm(III) over Eu(III) with PrOH-BPTD being the stronger ligand. The distribution of Am(III), Cm(III), and Ln(III) between an organic phase containing the extracting agent N,N,N',N'-tetra-n-octyl-3-oxapentanediamide (TODGA) and aqueous phases containing PrOH-BPTD is studied as a function of time and temperature as well as the TODGA, BPTD, and HNO3 concentrations. A system composed of 0.2 mol/L TODGA and 0.04 mol/L PrOH-BPTD in 0.33-0.39 mol/L HNO3 allows for selective Am(III) back-extraction into the aqueous phase while keeping Cm(III) and Ln(III) in the organic phase, marking PrOH-BPTD as an excellent complexant for an optimized AmSel process (Am(III) selective extraction).