Escaping drought: The pectin methylesterase inhibitor gene Slpmei27 can significantly change drought resistance in tomato

Plant Physiol Biochem. 2022 Dec 1:192:207-217. doi: 10.1016/j.plaphy.2022.10.008. Epub 2022 Oct 12.

Abstract

Drought stress will lead to a decrease in tomato yield and poor flavour, yield and quality, resulting in economic losses in agricultural production. Mining the key genes regulating tomato drought resistance is of great significance to improve the drought resistance of tomato plants. The cell wall can directly participate in the plant drought stress response as one of the main components of the cell wall, and the regulation of pectin content in plant drought resistance is still unclear. Here, the candidate gene Solyc08g006690 (Slpmei27) was obtained by fine mapping based on genome sequencing technology (BSA-seq) of late-maturing stress-resistant tomato mutants found in the field. Slpmei27 is expressed in the cell wall. The transient silencing of Slpmei27 by VIGS significantly improved the drought resistance of tomato. Meanwhile, Slpmei27 silencing could significantly change the cell wall structure of plants, change the stomatal pass rate, reduce the water loss rate of plants, improve the scavenging ability of reactive oxygen species, change the redox balance in plants, and thus improve the drought resistance of tomato. The promoter region of this gene contains a large number of hormone-response and stress-response binding sites. The promoter region of the Slpmei27 gene in the mutant could lower the expression of downstream genes. Through this study, the mechanism by which Slpmei27 improves tomato drought resistance was revealed, and the relationship between pectin methyl ester metabolism and plant drought resistance was established, providing a theoretical basis for the production of high-quality tomato materials with high drought resistance.

Keywords: Drought treatment; Pectin methylesterase inhibitor; Tomato; VIGS.