Myosin turnover controls actomyosin contractile instability

Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2211431119. doi: 10.1073/pnas.2211431119. Epub 2022 Oct 20.

Abstract

Actomyosin contractile force produced by myosin II molecules that bind and pull actin filaments is harnessed for diverse functions, from cell division by the cytokinetic contractile ring to morphogenesis driven by supracellular actomyosin networks during development. However, actomyosin contractility is intrinsically unstable to self-reinforcing spatial variations that may destroy the actomyosin architecture if unopposed. How cells control this threat is not established, and while large myosin fluctuations and punctateness are widely reported, the full course of the instability in cells has not been observed. Here, we observed the instability run its full course in isolated cytokinetic contractile rings in cell ghosts where component turnover processes are absent. Unprotected by turnover, myosin II merged hierarchically into aggregates with increasing amounts of myosin and increasing separation, up to a maximum separation. Molecularly explicit simulations reproduced the hierarchical aggregation which precipitated tension loss and ring fracture and identified the maximum separation as the length of actin filaments mediating mechanical communication between aggregates. In the final simulated dead-end state, aggregates were morphologically quiescent, including asters with polarity-sorted actin, similar to the dead-end state observed in actomyosin systems in vitro. Our results suggest the myosin II turnover time controls actomyosin contractile instability in normal cells, long enough for aggregation to build robust aggregates but sufficiently short to intercept catastrophic hierarchical aggregation and fracture.

Keywords: actomyosin; aggregation; cytokinesis; myosin; turnover.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Actins* / metabolism
  • Actomyosin* / metabolism
  • Cytokinesis / physiology
  • Cytoskeletal Proteins / metabolism
  • Myosin Type II / metabolism
  • Myosins / metabolism

Substances

  • Actomyosin
  • Actins
  • Myosins
  • Myosin Type II
  • Cytoskeletal Proteins