Identification of Differentially Expressed microRNAs Associated with Ischemic Stroke by Integrated Bioinformatics Approaches

Int J Genomics. 2022 Oct 10:2022:9264555. doi: 10.1155/2022/9264555. eCollection 2022.

Abstract

Ischemic stroke (IS) is one of the leading causes of disability and mortality worldwide. This study aims to find the crucial exosomal miRNAs associated with IS by using bioinformatics methods, reveal potential biomarkers for IS, and investigate the association between the identified biomarker and immune cell pattern in the peripheral blood of IS patients. In this study, 3 up-regulated miRNAs (hsa-miR-15b-5p, hsa-miR-184, and hsa-miR-16-5p) miRNAs in the serum exosomes between IS patients and healthy controls from GEO database (GSE199942) and 25 down-regulated genes of peripheral blood mononuclear cells of IS patients from GSE22255 were obtained with the help of the R software. GO annotation and KEGG pathway enrichment analysis showed that the 25 down-regulated genes were associated with coenzyme metabolic process and were mainly enriched in the N-glycan biosynthesis pathway. Furthermore, we performed the LASSO algorithm to narrow down the above 25 intersected genes, and identified 8 key genes which had a good diagnostic value in discriminating IS patients from the healthy controls analyzed with ROC curve. CIBERSORT algorithm indicated that the abundance of M0 macrophages and resting mast cells was significantly lower than that of the control group. The spearman correlation analysis showed that STT3A was negatively correlated with the proportion of follicular helper T cells, activated NK cells and resting dendritic cells. Finally, GSE117064 showed that has-miR-16-5p was more advantageous for diagnosing stroke. In conclusion, hsa-miR-15b-5p, hsa-miR-184, and hsa-miR-16-5p are identified as specific related exosomal miRNAs for IS patients. These genes may provide new targets for the early identification of IS.