Complex refractive indices of Spiro-TTB and C60 for optical analysis of perovskite silicon tandem solar cells

Opt Express. 2022 Oct 10;30(21):37957-37970. doi: 10.1364/OE.458953.

Abstract

Evaporated charge extraction layers from organic molecular materials are vital in perovskite-based solar cells. For opto-electronic device optimization their complex refractive indices must be known for the visible and near infrared wavelength regime; however, accurate determination from thin organic films below 50 nm can be challenging. By combining spectrophotometry, variable angle spectroscopic ellipsometry, and X-ray reflectivity with an algorithm that simultaneously fits all available spectra, the complex refractive index of evaporated Spiro-TTB and C60 layers is determined with high accuracy. Based on that, an optical losses analysis for perovskite silicon solar cells shows that 15 nm of Spiro-TTB in the front of a n-i-p device reduces current by only 0.1 mA/cm2, compared to a substantial loss of 0.5 mA/cm2 due to 15 nm of C60 in a p-i-n device. Optical device simulation predicts high optical generation current densities of 19.7 and 20.1 mA/cm2 for the fully-textured, module-integrated p-i-n and n-i-p devices, respectively.