Influence of heating temperature on the optical response properties and surface relief patterns of TiO2/GeO2/ormosils composite films containing azobenzene

Appl Opt. 2022 Sep 10;61(26):7671-7676. doi: 10.1364/AO.471628.

Abstract

With the progress of modern integrated optical technology, organic-inorganic composite materials have been widely used in integrated optoelectronic devices. Because of satisfying optical response properties among azobenzene, it will be an ideal choice to introduce the material into organic-inorganic composite materials. TiO2/GeO2/ormosils composite films containing azobenzene were prepared by combining the solgel technique with the spin-coating process. The optical transmission modes and loss of as-prepared samples at different transmission wavelengths were researched by a prism coupler. The result shows that the composite film is multi-mode transmission at the transmission wavelength of 633 nm and single-mode transmission at 1538 nm. The transmission loss is sufficient for applications in optical elements. The response properties and Fourier transform infrared spectroscopy of as-prepared samples at different heating temperatures were also studied. The composite films obtained at 50°C have the best optical response properties. Furthermore, the banding energy and chemical composition among the films were measured through x-ray photoelectron spectroscopy. Finally, the surface topography of as-prepared samples was observed by atomic force microscopy. The surface of the composite film appears with patterns of relief under the appropriate temperature. The above results show that the as-prepared TiO2/GeO2/ormosils composite films containing azobenzene will be a kind of ideal material in the field of integrated optics applications.