Refractive index sensor based on a ring with a disk-shaped cavity for temperature detection applications

Appl Opt. 2022 May 10;61(14):3997-4004. doi: 10.1364/AO.454522.

Abstract

In this study, we proposed a novel refractive index sensor structure, comprising a metal-insulator-metal (MIM) waveguide and a circular ring containing a disk-shaped cavity (CRDC). The finite element method was used to theoretically analyze the sensor characteristics. The simulation results showed that the disk-shaped cavity is the key to the asymmetric Fano resonance, and the radius of the CRDC has a significant influence on the performance of the sensor. A maximum sensitivity and figure of merit (FOM) of 2240 nm/RIU and 62.5, respectively, were realized. Additionally, the refractive index sensor exhibits the potential of aiding in temperature detection owing to its simple structure and high sensitivity of 1.186 nm/ºC.