Cr/C multilayer growth on a heavy metal layer for upgrading of high efficiency tender x-ray gratings

Appl Opt. 2022 Jul 1;61(19):5769-5775. doi: 10.1364/AO.461374.

Abstract

To increase efficiency of single layer gratings used in the tender x-ray range, a high reflectance multilayer can be directly grown on single layer gratings. Multilayer growth quality was studied by depositing the Cr/C multilayer on a Pt single layer using flat substrates. Their structure quality and adhesion were characterized by atomic force microscopy (AFM), grazing incidence x-ray reflectivity (GIXRR), x-ray scattering (XRS), x-ray diffraction (XRD), and layer adhesion measurement. AFM results showed that the surface roughness was 0.218 nm for the multilayer without the Pt layer and 0.272 nm for the multilayer with the Pt layer. As GIXRR results showed, the average interface widths were 0.39 nm for the multilayer without the Pt layer and 0.42 nm for the multilayer with the Pt layer. XRS results indicated that the existence of a Pt layer enlarged slightly the roughness of the multilayer. Simulation results exhibited that these slight changes caused by the Pt layer had an insignificant effect on reflectivity. As XRD results displayed, the crystallization of the Pt layer had negligible effects on the crystallization of Cr in films. The layer adhesion measurement revealed that the critical loads to peel off the layer from the substrate were 84.64 mN for the multilayer without the Pt layer and 33.99 mN for the multilayer with the Pt layer. After 6 months, the latter layer structure is undamaged, demonstrating that the coating is not easily peeled off. This study proves the feasibility to upgrade a low efficiency single Pt layer grating to a highly efficient multilayer grating.