Effects of green tide on microbial communities in waters of the Jiangsu coastal area, China

Water Environ Res. 2022 Oct;94(10):e10797. doi: 10.1002/wer.10797.

Abstract

Recently, green tide outbreaks have resulted in severe coastal ecology and economic effects in China. Jiangsu coastal areas are usually the site of early green tide outbreaks. To clarify the effects of green tide outbreaks in Jiangsu coastal areas, this study analyzed microbial communities during green tide-free and green tide outbreak periods (May and July, respectively) through 16S rDNA sequencing. Sequences were clustered into 4117 operational taxonomic units (OTUs), 1044 and 3834 of which were obtained from the May and July groups, respectively. Redundancy analysis indicated that green tide occurrence was closely associated with the temperature, pH, and concentrations of various nutrients. Diversity analysis revealed that the July group had a richer microbial community than the May group, in agreement with the results of propagule culture. Moreover, comparative analysis revealed that samples in the May and July groups clustered together. According to Megan analysis, the May group had much more Psychrobacter, Sulfitobacter, and Marinomonas than the July group, whereas the other genera were predominantly found in July, such as Ascidiacerhabitans, Synechococcus Hydrotalea, and Burkholderia-Paraburkholderia. These findings suggest that green tide outbreaks affect marine microbial communities, and detecting the changes in the identified genera during green tide outbreaks may contribute to green tide forecasting. PRACTITIONER POINTS: Jiangsu coastal areas are usually the site of early green tide outbreaks. Green tide occurrence was related to the concentrations of various nutrients. Microbial species and community structure significantly changed after green tide outbreak.

Keywords: 16S rDNA; Southern Yellow Sea; green tide; macroalgae; microbial community.

MeSH terms

  • China
  • DNA, Ribosomal
  • Ecology
  • Eutrophication
  • Microbiota*
  • Ulva*

Substances

  • DNA, Ribosomal