Remote sensing using a spatially and temporally controlled asymmetric perfect vortex basis generated with a 2D HOBBIT

Opt Express. 2022 Sep 12;30(19):34765-34775. doi: 10.1364/OE.469328.

Abstract

Orbital angular momentum (OAM) is a potential tool for remote sensing applications since amplitude/phase distributions can be decomposed into an OAM basis for analysis. We demonstrate the generation of a spatially asymmetric perfect vortex (APV) basis based on a pulsed 2D HOBBIT (Higher Order Bessel Beams Integrated in Time) system using two acousto-optic deflectors and optical coordinate transformation optics. Results are demonstrated for numerous radii and OAM charges as high as 20, with switching speeds greater than 400 kHz. The spatial APV basis is used to design different types of pulse trains for amplitude object pattern recognition and phase object wavefront sensing. Experimental results of sensing are provided for an amplitude object and a phase object to demonstrate the feasibility of the spatial APV on remote sensing tasks.