Deriving vertical profiles of chlorophyll-a concentration in the upper layer of seawaters using ICESat-2 photon-counting lidar

Opt Express. 2022 Aug 29;30(18):33320-33336. doi: 10.1364/OE.463622.

Abstract

Chlorophyll-a concentration (chl-a) is a great indicator for estimating phytoplankton biomass and productivity levels and is also particularly useful for monitoring the water quality, biodiversity and species distribution, and harmful algal blooms. A great deal of studies investigated to estimate chl-a concentrations using ocean color remotely sensed data. With the development of photon-counting sensors, spaceborne photon-counting lidar can compensate for the shortcomings of passive optical remote sensing by enabling ocean vertical profiling in low-light conditions (e.g., at night). Using geolocated photons captured by the first spaceborne photon-counting lidar borne on ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2), this research reported methods for deriving vertical profiles of chl-a concentration in the upper layer of ocean waters. This study first calculates the average numbers of backscattered subaqueous photons of ICESat-2 at different water depths, and then estimates the optical parameters in water column based on a discrete theoretical model of the expected number of received signal photons. With the estimated optical parameters, vertical profiles of chl-a concentration are calculated by two different empirical algorithms. In two study areas (mostly with Type I open ocean waters and small part of Type II coastal ocean waters), the derived chl-a concentrations are generally consistent when validated by BGC-Argo (Biogeochemical Argo) data in the vertical direction (MAPEs<15%) and compared with MODIS (Moderate Resolution Imaging Spectroradiometer) data in the along-track direction (average R2>0.86). Using globally covered ICESat-2 data, this approach can be used to obtain vertical profiles of chl-a concentration and optical parameters at a larger scale, which will be helpful to analyze impact factors of climate change and human activities on subsurface phytoplankton species and their growth state.

MeSH terms

  • Chlorophyll
  • Chlorophyll A*
  • Humans
  • Photons
  • Phytoplankton
  • Seawater*

Substances

  • Chlorophyll
  • Chlorophyll A