Asymmetric point-to-multipoint coherent architecture with a frequency aliasing recovery algorithm for cost-constraint short-reach access networks

Opt Express. 2022 Aug 29;30(18):33124-33135. doi: 10.1364/OE.463944.

Abstract

An asymmetric point-to-multipoint (PTMP) coherent architecture combined with a frequency aliasing recovery (FAR) algorithm is proposed for cost-constraint short-reach access networks. In this architecture, the uplink transmitters are simplified significantly with the uplink dual-polarization four-level pulse amplitude modulation (DP-PAM4) and downlink DP quadrature phase shift keying (DP-QPSK) asymmetric transmission design. Digital to analog converters (DACs) and radio frequency (RF) drivers are reduced by half, and in-phase and quadrature modulators (IQMs) are replaced by Mach-Zehnder modulators (MZMs), saving four MZ interferometers (MZIs). Furthermore, based on the asymmetric architecture, the FAR algorithm can recover signals from frequency aliasing caused by frequency offset (FO), even when half of the signal spectrum is aliased. This algorithm enables the asymmetric architecture to narrow down guard bands between subcarriers or even overlap the subcarriers, saving the receiver bandwidth at the aggregation/hub side. The performance of the asymmetric uplink DP-PAM4 transmission with the FAR algorithm is evaluated in both simualations and experiments. The effects of laser linewidths and IQ skew on the performance of the FAR algorithm are also analyzed. Simulation results show the algorithm can recover 16 Gbaud and 32 Gbaud signal from 8 GHz and 16 GHz aliasing, respectively. In the experiments with 10 km fiber transmissions, the FAR algorithm can recover 10 Gbaud signals from 5 GHz frequency aliasing, saving about 20.83% of the total receiver bandwidth in a 2-subcarrier system.