Use of DSLR and Sonic Cameras to Detect and Locate High-Voltage Corona Discharges

Sensors (Basel). 2022 Sep 24;22(19):7250. doi: 10.3390/s22197250.

Abstract

Corona discharges are a concern in high-voltage applications. It is of utmost importance to detect and locate the discharges at an early stage using simple methods for this purpose. This paper evaluates and compares the sensitivity of two methods for detecting and locating the source of discharges, which are based on a digital single-lens reflex (DSLR) camera and a portable wideband sonic camera incorporating a matrix of micro-electromechanical systems (MEMS) microphones. Both cameras can generate an image of the studied area where the discharge sites are identified. The study is carried out with different electrode geometries, 50 Hz alternating current (ac) and positive and negative direct current (dc) supplies, and the effect of the distance between the sensor and the discharge sites is also analyzed. The presented results show that the sonic camera enables fast, simple, and sensitive detection and localization of the source of corona discharges even at a very early stage in daylight conditions, regardless of the type of power supply, that is, ac or positive/negative dc, and at distance of several meters from the discharge source.

Keywords: acoustic methods; corona discharges; high-voltage; optic methods; partial discharges.