Exotic Grasses Reduce Infiltration and Moisture Availability in a Temperate Oak Savanna

Plants (Basel). 2022 Sep 30;11(19):2577. doi: 10.3390/plants11192577.

Abstract

Biological invasions represent one of the most urgent conservation challenges. Oregon white oak (Quercus garryana) savannas, a complex of grassland and transitional forest, are especially sensitive to these invasions. These ecosystems have been severely degraded and fragmented over the past century and are being encroached by conifers, and oak seedlings are failing to emerge from the understory at many locations. Understanding competitive interactions between Oregon white oak and associated native and exotic vegetation would provide insight into forest-grassland dynamics and the role of exotic grasses in the decline of native species, the processes that maintain temperate savanna ecosystems, and the role of soil water uptake by individual savanna species in contributing to overall species assemblages. In this study, we quantified the soil moisture budget for invaded and uninvaded oak-associated ecosystems. From February to October 2007 we used a split paired plot experiment in Duncan, British Columbia, Canada to measure soil moisture on treatment sites where exotic grasses were removed with herbicide and control plots where they were not, using three depths (5, 20, and 35 or 50 cm) in the soil profile. Our results show that the plots that contained exotic vegetation had a faster rate of soil drying following precipitation events at the 5 cm depth than plots with the predominantly native species. We attribute this difference to the capacity of exotic vegetation to exploit soil moisture more rapidly than native vegetation at times of the year when native vegetation cannot. These results provide insight into one mechanism by which exotic grasses affect associated native plants and could help guide restoration efforts.

Keywords: Quercus garryana; competition; invasive species; seedling recruitment; soil moisture; temperate oak savannas.

Grants and funding

Funding for this research was provided by the Natural Sciences and Engineering Research Council of Canada grants awarded to Z. Gedalof and A. Berg.