The Unprecedented Role of 3D Printing Technology in Fighting the COVID-19 Pandemic: A Comprehensive Review

Materials (Basel). 2022 Oct 1;15(19):6827. doi: 10.3390/ma15196827.

Abstract

The coronavirus disease 2019 (COVID-19) rapidly spread to over 180 countries and abruptly disrupted production rates and supply chains worldwide. Since then, 3D printing, also recognized as additive manufacturing (AM) and known to be a novel technique that uses layer-by-layer deposition of material to produce intricate 3D geometry, has been engaged in reducing the distress caused by the outbreak. During the early stages of this pandemic, shortages of personal protective equipment (PPE), including facemasks, shields, respirators, and other medical gear, were significantly answered by remotely 3D printing them. Amidst the growing testing requirements, 3D printing emerged as a potential and fast solution as a manufacturing process to meet production needs due to its flexibility, reliability, and rapid response capabilities. In the recent past, some other medical applications that have gained prominence in the scientific community include 3D-printed ventilator splitters, device components, and patient-specific products. Regarding non-medical applications, researchers have successfully developed contact-free devices to address the sanitary crisis in public places. This work aims to systematically review the applications of 3D printing or AM techniques that have been involved in producing various critical products essential to limit this deadly pandemic's progression.

Keywords: 3D printing; COVID-19; additive manufacturing; innovation; medical applications; open-source files.

Publication types

  • Review

Grants and funding

This research received no external funding.