Effect of Post-Weld Heat Treatment on Microstructure and Fracture Toughness of X80 Pipeline Steel Welded Joint

Materials (Basel). 2022 Sep 25;15(19):6646. doi: 10.3390/ma15196646.

Abstract

In the current study, post-weld heat treatment (PWHT 580 °C) was used for an X80 pipeline steel-welded joint, and the fracture toughness of the welded joint was investigated using a crack tip opening displacement (CTOD) test. The relationship between microstructure evolution and fracture toughness is also discussed in this study. The results showed that the weld center mainly consisted of acicular ferrite (AF). The subcritical heat-affected zone (SCHAZ) consisted of a large amount of fine polygonal ferrite and some AF, and it maintained the rolling state of the base metal. The microstructure of the coarse-grained heat-affected zone (CGHAZ) was composed of granular bainite (GB) and M/A constituents, the latter of which decreased after the PWHT. The CTOD values of the weld center were in the range of 0.18-0.27 mm, while those of the CGHAZ were in the range of 0.02-0.65 mm. A brittle fracture occurred in the CGHAZ for both the as-welded and PWHT samples; the CTOD values were 0.042 mm and 0.026 mm, respectively. The CTOD values of the SCHAZ's location were in the range of 0.8-0.9 mm. The PWHT did not deteriorate the microstructure of the CGHAZ and had little influence on the fracture toughness of the X80 pipeline steel-welded joint; it ensured the fracture toughness of the welded joints and reduced the welding residual stress.

Keywords: coarse-grained heat-affected zone; crack tip opening displacement; pipeline steel.