Micromechanisms and Characterization of Low-Velocity Impact Damage in 3D Woven Composites

Materials (Basel). 2022 Sep 24;15(19):6636. doi: 10.3390/ma15196636.

Abstract

Low-velocity impact (LVI) damage of 3D woven composites were experimentally and numerically investigated, considering different off-axis angles and impact energies. The impact responses were examined by LVI tests, and the damage morphology inside the composites was observed by X-ray micro-computed tomography (μ-CT). Yarn-level damage evolution was revealed by developing a hybrid finite element analysis model. The results show that the impact damage has significant directionality determined by the weft/warp orientation of the composites. The damage originates at the bottom of the impacted area and then expands outwards and upwards simultaneously, accompanied by in-plane and out-of-plane stress transfers. The straight-line distributed weft/warp yarns play an important role in bearing loads at the beginning of loading, while the w-shape distributed binder warp yarns gradually absorb impact deformation and toughen the whole structure as the loading proceeds. The effect of directional impact damage on post-impact performance was explored by performing compressing-after-impact (CAI) tests. It is revealed that the CAI properties along principal directions are more sensitive to the low-velocity impact, and the damage mode is significantly affected by the loading direction.

Keywords: carbon fibers; finite element analysis; impact behavior; woven composites.