Effects of the Parent Alloy Microstructure on the Thermal Stability of Nanoporous Au

Materials (Basel). 2022 Sep 23;15(19):6621. doi: 10.3390/ma15196621.

Abstract

Nanoporous (NP) metals represent a unique class of materials with promising properties for a wide set of applications in advanced technology, from catalysis and sensing to lightweight structural materials. However, they typically suffer from low thermal stability, which results in a coarsening behavior not yet fully understood. In this work, we focused precisely on the coarsening process undergone by NP Au, starting from the analysis of data available in the literature and addressing specific issues with suitably designed experiments. We observe that annealing more easily induces densification in systems with short characteristic lengths. The NP Au structures obtained by dealloying of mechanically alloyed AuAg precursors exhibit lower thermal stability than several NP Au samples discussed in the literature. Similarly, NP Au samples prepared by annealing the precursor alloy before dealloying display enhanced resistance to coarsening. We suggest that the microstructure of the precursor alloy, and, in particular, the grain size of the metal phases, can significantly affect the thermal stability of the NP metal. Specifically, the smaller the grain size of the parent alloy, the lower the thermal stability.

Keywords: Ag-Au alloy; coarsening; dealloying; grain size; microstructure; nanoporous metals; nanostructure; thermal stability.