Time-overlapping structured-light projection: high performance on 3D shape measurement for complex dynamic scenes

Opt Express. 2022 Jun 20;30(13):22467-22486. doi: 10.1364/OE.460088.

Abstract

High-speed three-dimensional (3D) shape measurement has been continuously researched due to the demand for analyzing dynamic behavior in transient scenes. In this work, a time-overlapping structured-light 3D shape measuring technique is proposed to realize high-speed and high-performance measurement on complex dynamic scenes. Time-overlapping structured-light projection is presented to maximumly reduce the information redundancy in temporal sequences and improve the measuring efficiency; generalized tripartite phase unwrapping (Tri-PU) is used to ensure the measuring robustness; fringe period extension is achieved by improving overlapping rate to further double the encoding fringe periods for higher measuring accuracy. Based on the proposed measuring technique, one new pixel-to-pixel and unambiguous 3D reconstruction result can be updated with three newly required patterns at a reconstruction rate of 3174 fps. Three transient scenes including collapsing wood blocks struck by a flying arrow, free-falling foam snowflakes and flying water balloon towards metal grids were measured to verify the high performance of the proposed method in various complex dynamic scenes.