Flexible assembly of the PEDOT: PSS/ exfoliated β-Ga2O3 microwire hybrid heterojunction for high-performance self-powered solar-blind photodetector

Opt Express. 2022 Jun 6;30(12):21822-21832. doi: 10.1364/OE.461342.

Abstract

Motivated by the goals of fabricating highly reliable, high performance, and cost-efficient self-powered photodetector (PD) for numerous scientific research and civil fields, an organic-inorganic hybrid solar-blind ultraviolet (UV) PD based on PEDOT: PSS/exfoliated β-Ga2O3 microwire heterojunction was fabricated by a flexible and cost-effective assembly method. Benefiting from the heterojunction constructed by the highly crystalline β-Ga2O3 and the excellent hole transport layer PEDOT: PSS, the device presents a high responsivity of 39.8 mA/W at 250 nm and a sharp cut-off edge at 280 nm without any power supply. Additionally, the ultra-high normalized photo-to-dark current ratio (> 104 mW-1cm2) under reverse bias and the superior detectivity of 2.4×1012 Jones at zero bias demonstrate the excellent detection capabilities. Furthermore, the hybrid PD exhibits a rapid rise time (several milliseconds) and high rejection ratio (R250/R365: 5.8 × 103), which further highlights its good spectral selectivity for solar-blind UV. The prominent performance is mainly ascribed to the efficient separation of the photogenerated carriers by the large built-in electric field of the advanced heterojunction. This flexible assembly strategy for solar-blind UV PD combines the advantages of high efficiency, low cost and high performance, providing more potential for PD investigation and application in the future.